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Non-linear vibrations of cables considering loosening
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Abstract

A cable cannot resist the axial compressive force that may be induced during large amplitude vibrations.
In this paper, the effect of cable loosening on non-linear vibrations of flat-sag cables is discussed by using
the finite difference method that can express cable loosening. In the present method, flexural rigidity and
damping of the cable are considered in the equations of motion of a cable in order to handle the numerical
instability. The effect of cable loosening is evaluated explicitly in the present paper. Furthermore, non-
linear vibration properties are evaluated for various parameters under periodic and step vertical loading.
The effect of cable loosening on response under vertical periodic time-varying load is small and it is possible
for the sag-to-span ratio to roughly equal the ratio for modal transition. The loosening under the vertical
step loading in the direction opposite to the gravity appears at almost the same sag-to-span ratio.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In conventional non-linear vibration analysis of cables, the equations of motion are formulated
based on the assumption that the cable is a continuum resisting only axial force, and the
constitutive law used is the same as truss members. In other words, cables are assumed to be able
to resist both tensile and compressive axial forces [1,2]. However, the assumption cannot be
applied to the case when the sum of initial and deflection-induced additional horizontal tensions
becomes compressive since actual cables have no resistance against compressive force. This
situation may be easily observed in non-linear vibration of cable related to strong earthquake,
wind uplift, wind–rain-induced vibration [3–5], etc. Therefore, it is necessary to evaluate the effect
of cable loosening in handling the non-linear vibrations of cables. An analysis considering cable
loosening was carried out for stay cables in a cable stayed bridge under strong ground motion [3].
The non-linear loosening effect has also been observed in the hangers from the main cable of cable
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suspension bridges [6–8]. However, the mass of the cables was neglected in these analyses. Papers
of research considering both loosening and mass of the cables have apparently not been published
so far.
This paper attempts to examine the effect of loosening on non-linear vibrations of flat

horizontal cables subjected to symmetric loading. The non-linear equations of motion of a cable
formulated as a continuum are made discrete using the explicit formula of the finite difference
method to solve them under the condition of the cable with no compressive resistance. A new
technique adding flexural rigidity and damping is proposed to solve the divergent problem. The
generation regions of compressive forces and the effect of cable loosening on the responses of
cables are evaluated under vertical periodic time-varying and step loading conditions, which is a
mathematical idealization for the effect of earthquake, wind uplift and wind–rain-induced
vibrations.

2. Equations of motion of a cable

A horizontal cable with a uniform cross section hanging between two points as shown in Fig. 1
is analyzed. If the profile is flat, so that the sag-to-span ratio is 1:8 or less, equations of motion for
non-linear vibration of a cable neglecting horizontal inertial force are obtained as follows [1]:
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where m is the mass per unit length, H is the initial horizontal tension induced by the dead load
of the cable, DH is the deflection-induced additional horizontal tension, E is the Young’s
modulus, A is the cross-sectional area, LE ¼ L 1þ 8ðf =LÞ2

� �
is the length of the cable, L is the

span of the cable, f is the sag of the cable, g is the gravitational acceleration, p is the vertical
load intensity, w is the displacement of the cable, x is the span-wise co-ordinate of the cable and t

is the time.
Although a cable is generally considered a member with no bending resistance, the effects of

flexural rigidity and damping originally existing in the actual cable are considered in this paper in
order to deal with cable loosening without instability in the numerical calculation. Eq. (1) is
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Fig. 1. Geometry of a cable.
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rewritten as [9]
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where I is the geometrical moment of inertia and c is the damping coefficient.
Making Eqs. (2) and (3) non-dimensional by the span of the cable L and the first natural

circular frequency of the string o0; the following equations are obtained:
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where %w ¼ w=L is the non-dimensional displacement in the z direction, %x ¼ x=L is the non-
dimensional co-ordinate in the x direction, t ¼ o0t is the non-dimensional time, o0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H=mðp=LÞ2
q

is the first natural circular frequency of the taut string which has no sag [1], o1

is the first natural circular frequency of the cable, %pð %x; tÞ ¼ pð %x; tÞ=mg is the non-dimensional load,
h is the damping constant, g ¼ f =L is the sag-to-span ratio of the cable, k2 ¼ EA=H is the ratio of
the elongation stiffness to the horizontal tension of the cable (the square of the ratio of the
longitudinal wave propagation velocity to the transversal wave propagation velocity), d ¼
ðEI=L2 � 1=EAÞ is the ratio of the flexural rigidity to the elongation stiffness [9] and l2 ¼
64k2g2=ð1þ 8g2Þ is an Irvine parameter [1].

3. Numerical analysis method

3.1. Analysis considering loosening

Eqs. (4) and (5) are non-linear equations of motion of flat horizontal cables. Additional
horizontal tensions are constant in every point of a cable, because axial inertial force of the cable
is neglected based on the assumption of the flat cable. This means the total non-dimensional
horizontal tension is given by 1þ DH=H: In the non-linear vibration analysis for considering
cable loosening, the value of total horizontal tension is made to be zero when it becomes less than
zero

1þ
DH

H
¼ 0 1þ

DH

H
o0

� �
: ð6Þ

Eq. (4) indicates that a cable without flexural rigidity and damping has no restoring force if
compressive force appears in it. In this case, the vertical inertial force, the external load and the
gravity are applied to the cable. In order to solve Eqs. (4) and (5) while evaluating Eq. (6), the
numerical method should be used. The explicit formula of the finite difference method [10] is
employed in this study. The definite integrals in Eq. (5) are calculated by Simpson’s 1

3
formula. The

time interval for the numerical analysis should be defined to satisfy the stability condition of the
scheme used.
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3.2. Analysis neglecting loosening

When cable loosening is not taken into account, not only the finite difference method but also a
Galerkin method can be applied to solve Eqs. (4) and (5) as described below.
The solution of Eq. (4) is assumed as follows:

%wð %x; tÞ ¼
XN
i¼1

TiðtÞWið %xÞ; ð7Þ

where TiðtÞ is the unknown time function and Wið %xÞ is the co-ordinate function.
In this paper, the natural modes of linear vibrations of the cable without the flexural rigidity are

used as the co-ordinate functions [1]. Only the symmetric modes that produce additional
horizontal tension are considered in the present analysis. The co-ordinate function in this case is
given as

Wið %xÞ ¼ 1� tan
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where %oi ¼ oi=o0 is the ith non-dimensional natural circular frequency and obtained by the
following equation:
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Substituting Eq. (7) into Eqs. (4) and (5) and employing a Galerkin method, the non-
linear ordinary differential equations with respect to the time function TmðtÞ are obtained as
follows:
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0 Wmð %xÞ d %x are the constants dependent on the modal shapes of the linear problem by a
Galerkin method.

4. Analytical condition

The loads used in this paper are uniformly distributed periodic time-varying and uniformly
distributed step vertical loads.
Periodic time-varying vertical load is expressed in the form of following equation:

%pð %x; tÞ ¼ p0 sin ðO=o1Þt
� �

; ð12Þ
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where O is the circular frequency of the load and its value is set to be the same as the first
symmetrical circular frequency of the linear cable. The load intensity p0 is non-dimensionalized by
the cable weight per unit length. The initial displacement and velocity of the cable are made to be
zero. The number of divisions of a cable is 100, that is, D %x=0.01. In order to satisfy the stability
condition, the time interval must be less than 2.5� 10�5 and 1.0� 10�5 is used here.

5. Responses under periodic time-varying vertical loading

5.1. Accuracy of the finite difference method

In order to examine the accuracy of the finite difference method, an eigenvalue analysis is done
by the finite difference method, in which flexural rigidity and damping are neglected (the ratio of
flexural rigidity to the elongation stiffness d ¼ 0; the damping constant h ¼ 0), and the results are
compared with the symmetric eigenvalues obtained by Irvine’s equation (Eq. (9)). The
relationship between non-dimensional symmetric natural frequencies and parameter l2 is shown
in Fig. 2. The antisymmetric eigenvalues which are the same as those of the strings are also shown
in Fig. 2. The results obtained by the finite difference method overlap with those by Irvine’s
equation. These two solutions give the same results.
For the case in which the compressive forces do not appear, the time histories obtained by the

finite difference method and a Galerkin method (10 modes approximation) are shown in
Figs. 3(a)–(c). Figs. 3(a) and (b) are time histories of the displacement at the center point and the
total horizontal tension (d ¼ 0 and h ¼ 0), respectively. The two time histories overlap each other
and coincide very well in both displacement and tension. The modal shapes are kept smooth and
the same in compression and tension sides as shown in Fig. 3(c). Therefore, it is possible to use the
finite difference method to evaluate the response characteristics of the cable without cable
loosening even if flexural rigidity and damping are not considered.
Fig. 4 shows the responses with compressive force in the cable. The calculation results by the

finite difference method and the Galerkin method are illustrated in the figure. Time histories
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Fig. 2. Natural frequencies of a cable.
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obtained by the finite difference method with and without consideration of cable loosening are
compared in Figs. 5(a) and (b). The corresponding space shapes of the cable are shown in
Fig. 5(c). Notations a; b and c correspond to the maximum, zero and minimum displacements at
the center of the cable.
The compressive force appears at about the non-dimensional time t ¼ 8 first, as shown in

Fig. 4(b). The difference between the finite difference method and a Galerkin method can be seen
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Fig. 3. Time histories of: (a) displacement %w at center point, (b) horizontal axial force 1þ DH=H; and (c) space shapes

of a cable for g ¼ 0:026; k2 ¼ 900; p0 ¼ 0:05; d ¼ 0 and h ¼ 0: Notations a, b and c correspond to the maximum, zero

and minimum displacements at the center of the cable.
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after this time. A higher mode shape with discontinuity of the angle is observed in the space shape
of the cable at point c in Figs. 5(a) and (b) as shown in Fig. 5(c). This can be the cause of the
difference. Space shapes obtained by the finite difference method have such higher mode with
angular discontinuities when the total horizontal tension is close to zero. Their positions change
with the number of divisions of the cable in the analysis. The space shapes seem to become
discontinuous in the cable relaxations since the solution of Eq. (1) by the finite difference method
does not need to satisfy the continuity of the deflection angle of the cable.
In addition, the responses of the cable diverge like Figs. 5(a) and (b) if cable loosening is

considered. It may be caused by the occurrence of larger discontinuous deflection angles in the
space shapes of the cable. These discontinuous deflection angles bring out the additional
horizontal tension and diverge the response. Therefore, it is impossible to use the finite difference
method to calculate the responses of cables with loosening.

5.2. Analysis considering flexural rigidity and damping

In order to prevent the cable from undergoing the vibration components of higher modes with
discontinuous angles described in the above section, the ratio of flexural rigidity to elongation
stiffness d and damping constant h; which cables originally have, are considered in the analysis by
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the finite difference method. The effect of flexural rigidity d on the vibration of the cable becomes
large in the case of the higher mode with change of the curvature of the cable [9]. From this fact,
the rigidity d is taken into consideration in the present analysis. The direct time integration a-
method presented by Hilber et al.[11] improves numerical stability by algorithm damping higher
modes, while the flexural rigidity and damping, which cables possess as physical properties
influencing on higher modes, are taken into consideration in the present paper as shown in Eq. (3).
The natural frequencies of cables in the case of d=10�7 are also plotted in Fig. 2. Results in the

case of chosen value d=10�7 overlap with those in the case of d ¼ 0 except the third symmetric
mode where l2>4� 102. The effect of the flexural rigidity on the lower frequencies is very small in
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the case of d=10�7. For the same case, the responses obtained by both the finite difference
method neglecting cable loosening and the Galerkin method are shown in Fig. 6. It can be seen
that the two responses show good agreement.
The responses (d ¼ 10�7 and h ¼ 0:001; the other parameters are the same as Fig. 5) are shown

in Figs. 7(a)–(c). The vibration components of higher modes with discontinuous angles are
excluded and the space shapes become smooth, as shown in Fig. 7(c). When these two parameters
are considered, the responses using the finite difference method become difficult to diverge and it
is possible to calculate them even if the compressive forces appear in the cable. So, the response
characteristics of cables with possible loosening can be clarified by considering the flexural rigidity
and damping of the cables in the analysis by the finite difference method. It is numerically
confirmed that the current technique of adding flexural rigidity and damping solves the divergent
problem.
The higher mode vibration without discontinuity becomes more predominant than Fig. 5(c) in

the space shapes of the cable in the compression side. These space shapes make it difficult to
generate the compressive force in the cable.
It can also be confirmed that space shapes change with the amplitudes of cables. Figs. 8–10

show the time histories when the load intensities are 1.5, 2.0 and 3.0 times of Fig. 7, respectively.
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center point and (b) horizontal axial force 1þ DH=H:
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The negative displacements, the compressive forces and the compression generated regions do not
increase very much from the values shown in Fig. 7 although those in the tensile region do
obviously. The reason for this can be advanced that cables keep the space shapes which are
difficult to generate the compressive forces as shown in Figs. 7(c), 8(c), 9(c) and 10(c).
The effect of loosening on the responses of cables under the periodic vertical loadings is small

for the numerical example in this study because the compression generated regions are narrow.
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5.3. Minimal loads and amplitudes to generate compressive forces in the cable

The relationship between minimal load intensity p0 to generate compressive forces in the cable
and parameter l2 is shown in Fig. 11. For reference, the sag-to-span ratio g is shown in the cases
of k2 ¼ 900 and 1600.
The compressive force begins to appear from near l2 ¼ 2:47p2 and p0 has the local minimum

near l2 ¼ 4p2 which corresponds to the mode transition region from the first to the second
symmetrical vibration (see Fig. 2). Next, it has the minimum near l2 ¼ 16p2: This sag-to-span
ratio g is also correspondent with the mode transition region from the second to the third
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symmetrical vibration in Fig. 2. Like this, the cables with the sag-to-span ratio g corresponding to
the natural mode transition region can be easily compressive.
Fig. 12 represents the non-dimensional compression causing displacement and the sag-to-span

ratio g relationship. When the non-dimensional displacement of cables is about 70% of the sag-to-
span ratio g; the compressive force begins to appear. Although the displacement fluctuates as the
sag-to-span ratio g increases, the general tendency of decrease in the displacement with increase of
sag-to-span ratio g can be seen.
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The minimal sag-to-span ratio which can generate the compressive force and the compression
causing displacement decreases with the increase of the ratio of elongation stiffness to horizontal
tension k2:

6. Responses under step vertical loading

The response characteristics of the cable under the step vertical loading %pð %x; tÞ ¼ p0 in the
direction opposite to the gravity are clarified in this section. This may be the easiest way to
generate the compressive forces in the cable.
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Fig. 11. Relationship between loads p0 in which the compressive force appears and Irvine parameter l2 for d ¼ 10�7

and h ¼ 0:001:

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.000

0.005

0.010

0.015

0.020

0.025

0.030

N
on

−d
im

en
si

on
al

 d
is

pl
ac

em
en

t

0.000

0.005

0.010

0.015

0.020

0.025

0.030

N
on

−d
im

en
si

on
al

 d
is

pl
ac

em
en

t

�

0.00 0.02 0.04 0.06 0.08 0.10 0.12 �

(a)

(b)

Fig. 12. Relationship between displacement %w in which the compressive force appears and sag-to-span ratio g for

d ¼ 10�7 and h ¼ 0:001: (a) k2 ¼ 900 and (b) k2 ¼ 1600:
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Fig. 13. Relationship between step loads p0 in which the compressive force appears and Irvine parameter l2 for

d ¼ 10�7 and h ¼ 0:001:
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Fig. 14. Relationship between displacement %w in which the compressive force appears and sag-to-span ratio g for

d ¼ 1027; h ¼ 0:001 and step load: (a) k2 ¼ 900 and (b) k2 ¼ 1600:
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Fig. 13 shows the relationship between the compression producing step load intensity p0 and
parameter l2: The compressive force begins to appear near l2 ¼ 2:44p2; which is almost the same
value under periodic vertical loading. The load intensity gradually decreases with increase of l2:
The non-dimensional compression producing displacement monotonically decreases with the
increase of sag-to-span ratio g as shown in Fig. 14. Space shapes in the cases of p0=0.6, 0.8 and
1.0 are shown in Figs. 15(a)–(c), respectively. The response of displacement at the center point, the
horizontal axial force and the power spectral density for p0 ¼ 0:8 are shown in Figs. 16(a)–(c). The
effect of cable loosening lengthens the period of the cable as shown in Fig. 16(c).

7. Concluding remarks

In this paper, numerical analysis using the finite difference method was carried out in order to
discuss the effect of cable loosening on dynamic behaviors of horizontal flat cables. An analysis
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method of non-linear vibration of cables considering flexural rigidity and damping is proposed in
order to handle possible loosening. By this method, the dynamic characteristics of cables with
possible loosening are spelled out explicitly and clarified. Main findings of this study can be
summarized as follows:

(1) The loosening is easy to appear in the cables with the sag-to-span ratio corresponding to the
mode transition region from the lower mode to the higher mode under periodic vertical
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and (c) power spectral density of a cable for g ¼ 0:026; k2 ¼ 900; p0 ¼ 0:80; d ¼ 10�7 and h ¼ 0:001:
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loading. The non-dimensional compression producing displacement depends on the sag-to-
span ratio and the ratio of the elongation stiffness to the horizontal tension. The compressive
force appearing region in the time history of the cable response is narrow since the higher
modes become predominant in the space shapes of the cable in the compression to reduce the
compressive force. Therefore, the effect of loosening on the response amplitudes and
frequencies of cables is not predominant.

(2) The loosening of the cable under the vertical step loading in the direction opposite to the
gravity appears at the almost same sag-to-span ratio under periodic vertical loading. The non-
dimensional compression producing displacement decreases with the increase of the sag-to-
span ratio.
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